USI Medience Corporation, Nonclinical Research Center

P-172 カニクイザルの体重,血液学的検査,血液生化学的検査の項目間相関について 〇高橋 一彰, 佐藤 順子, 山本 大, 比毛 則夫, 高木 辰巳, 石井 宏幸, 岡村 隆之, 大竹 誠司 株式会社LSIメディエンス

Relationship between Body Weight and Hematological and Biochemical Parameters in Cynomolgus Monkeys •Kazuaki TAKAHASHI, Junko SATO, Dai YAMAMOTO, Norio HIKE, Tatsumi TAKAKI, Hiroyuki ISHII, Takayuki OKAMURA, Seiji OTAKE LSI Medience Corporation If you have any questions, please contact the following: takahashi.kazuaki@mg.medience.co.jp

Objective

Little has been reported on the relationship between body weight and clinical pathology parameters in toxicity studies using cynomolgus monkeys. We have previously reported on the incidence of animals showing body weight loss in toxicity studies in spite of being control animals and the features of their results in hematology, biochemistry, and pathology [1]. In this study, we analyzed the relationship among body weight, rate of change in body weight, hematology, and biochemistry in control animals including animals showing body weight OSS.

[1] A Decrease in Body Weight without a Decrease in Food Consumption Observed in Cynomolgus Monkeys and Its Improvement. The 46th Annual Meeting of the Japanese Society of Toxicology 2019.

Material and Methods

Animals used: Cynomolgus monkeys in a control group (95 males and 95 females, 3 to 6 years old) in a 4-week toxicity study Body weight: At the end of the 4-week dosing period

Rate of change in body weight: It was calculated according to the following formula.

Rate of change in body weight = {(body weight at the end of the study) – (body weight at the start of the study)} / (body weight at the start of the study) \times 100

Hematology: Items listed in Table 1 were analyzed using CA-510 or XT-2000iV (Sysmex Corporation). PT and APTT were examined using plasma samples, and the other items were examined using blood samples anticoagulated with EDTA-2K.

Biochemistry: Items listed in Table 1 were analyzed using TBA-200FR (Canon Medical Systems Corporation) or Epalyzer 2 (Helena Laboratories).

Statistical analysis: The Shapiro–Wilk's test was used to check for normal distribution (Table 1) using statistical analysis system, EXSUS version 8.1.0 (CAC Croit Corporation, statistical analysis software: SAS 9.4, SAS Institute Japan Ltd.). Furthermore, data were analyzed by the Pearson correlation test for parametric tests or Spearman correlation tests for non-parametric analysis at a significance level of p<0.05, 0.01, or 0.001. The correlations were classified according to the r value (Table 2a).

				Male				Female			Male					Female			
Kesults	Items (Abbreviation; Unit)	Number o animals	f Mean	Standaro deviatior	d Statistical distribution	Number of animals	Mean	Standard deviation	Statistical distribution	Items (Abbreviation; Unit)	Number of animals	Mean	Standard deviation	Statistical distribution	Number of animals	Mean	Standard deviation	Statistical distribution	
	Rate of change in body weight (%)	95	2.9316	5.2604	Non-parametric	95	3.7053	5.1944	Parametric	Biochemistry									
bla 1 Cummany	Body weight (kg)	95	3.8474	0.6354	Parametric	95	3.0495	0.3175	Non-parametric	Aspartate aminotransferase (ASAT; U/L)	95	40.8947	26.5464	Non-parametric	95	33.9368	13.0586	Non-parametric	
ole i Summary	Hematology									Alanine aminotransferase (ALAT; U/L)	95	57.3579	67.2403	Non-parametric	95	52.0000	30.4976	Non-parametric	
statistics	Red blood cell count (RBC; ×10 ⁶ /µL)	95	5.5402	0.3961	Parametric	95	5.3333	0.4476	Non-parametric	Lactate dehydrogenase (LDH; U/L)	68	280.4559	73.0104	Non-parametric	68	266.4706	69.0491	Non-parametric	
5101151105	Hemoglobin concentration (HGB; g/dL)	95	13.3042	0.7839	Parametric	95	12.9137	0.9317	Non-parametric	Glutamate dehydrogenase (GLDH; U/L)	15	28.8000	18.9480	Parametric	15	27.6000	19.9241	Parametric	
	Hematocrit (HCT; %)	95	43.1274	2.7166	Non-parametric	95	42.1411	2.8324	Non-parametric	Alkaline phosphatase (ALP; U/L)	95	1699.0105	768.2146	Non-parametric	95	790.3263	304.1855	Non-parametric	
	Mean corpuscular volume (MCV; fL)	95	78.0242	4.7347	Parametric	95	79.2032	3.8819	Non-parametric	γ-Glutamyl transpeptidase (γGT; U/L)	60	77.65	38.934	Non-parametric	60	57.1	17.1886	Non-parametric	
	Mean corpuscular hemoglobin (MCH; pg)	95	24.0747	1.3633	Parametric	95	24.2600	1.1526	Parametric	Creatine kinase (CK; U/L)	89	80.0449	89.0468	Non-parametric	89	96.5056	156.6775	Non-parametric	
	Mean corpuscular hemoglobin concentration (MCHC; g/dL)	95	30.8842	1.2529	Non-parametric	95	30.7568	1.3355	Non-parametric	Total bilirubin (mg/dL)	95	0.1095	0.0670	Non-parametric	95	0.1442	0.0725	Non-parametric	
	Reticulocyte ratio (%)	86	0.9135	0.5021	Non-parametric	86	1.0678	0.4126	Non-parametric	Urea nitrogen (mg/dL)	95	21.5674	6.5991	Non-parametric	95	18.3495	3.7907	Non-parametric	
	Reticulocyte count (×10 ⁹ /L)	54	51.3815	24.9188	Non-parametric	54	57.8074	22.1574	Non-parametric	Creatinine (mg/dL)	95	0.8411	0.1519	Non-parametric	95	0.7074	0.1034	Non-parametric	
	Platelet count (PLT; ×10 ³ /µL)	95	390.3789	85.6238	Parametric	95	421.6211	83.4748	Non-parametric	Glucose (mg/dL)	95	85.0947	12.9353	Parametric	95	80.7263	13.4001	Parametric	
	Prothrombin time (PT; sec)	95	9.0653	0.7236	Non-parametric	95	8.5663	0.4741	Parametric	Total cholesterol (mg/dL)	95	107.2421	25.1425	Parametric	95	117.1158	24.0619	Non-parametric	
	Activated partial thromboplastin time (APTT; sec)	95	22.9295	1.8607	Parametric	95	22.3621	1.8649	Parametric	Phospholipid (mg/dL)	70	154.1857	35.1701	Parametric	70	165.7429	29.4548	Parametric	
	White blood cell count (WBC; ×10 ³ /µL)	95	9.3411	3.4228	Non-parametric	95	8.3998	2.5239	Non-parametric	Triglyceride (mg/dL)	95	36.8421	18.9587	Non-parametric	95	34.8737	15.4440	Non-parametric	
	Lymphocyte (Lym; ×10 ³ /µL)	95	4.7188	2.2748	Non-parametric	95	3.9560	1.2879	Non-parametric	Calcium (Ca; mg/dL)	95	10.3568	0.4780	Parametric	95	10.0221	0.4532	Parametric	
	Neutrophil (Neu; ×10 ³ /µL)	95	4.0248	2.2747	Non-parametric	95	3.9545	1.9949	Non-parametric	Inorganic phosphorus (IP; mg/dL)	84	4.8714	1.0802	Parametric	84	4.6655	1.0382	Parametric	
	Eosinophil (Eos; ×10 ³ /μL)	95	0.1754	0.2576	Non-parametric	95	0.1398	0.1106	Non-parametric	Sodium (Na; mmol/L)	95	150.8526	4.3929	Non-parametric	95	149.4737	3.1752	Non-parametric	
	Basophil (Baso; ×10 ³ /µL)	95	0.0048	0.0071	Non-parametric	95	0.0038	0.0057	Non-parametric	Potassium (K; mmol/L)	95	5.0537	0.5506	Non-parametric	95	4.7505	0.5080	Non-parametric	
	Monocyte (Mono; ×10 ³ /µL)	95	0.4172	0.2686	Non-parametric	95	0.3467	0.1444	Non-parametric	Chlorine (CI; mmol/L)	95	108.8105	3.6094	Non-parametric	95	109.8421	2.3307	Non-parametric	
										Total protein (g/dL)	95	8.0211	0.5562	Parametric	95	7.8358	0.4948	Non-parametric	

S	tat	I IS	tics	S

Table 2 Correlation matrix of biochemical parameters

	ALAT	LDH	GLDH	ALP	γGT	СК	Total bilirubin	Urea nitrogen	Creatinine	Glucose	Total cholesterol	Phospholipid	Triglyceride	Са	IP	Na	К	CI	Total protein
ΔΟΔΤ	0.6198***	0.6077***	0.5526*	-0.0772	0.0298	0.4408***	0.1647	0.2441*	-0.1274	0.0777	-0.1245	-0.1011	0.0732	-0.0479	-0.2256*	0.1316	0.1365	0.0642	0.0562
ASAT	0.7158***	0.5757***	0.5403*	-0.0222	0.0154	0.3202**	0.1367	0.2256*	0.1116	-0.046	-0.2427*	-0.1844	0.1459	-0.0497	-0.068	0.0944	0.1856	0.0569	-0.0447
ΔΙΔΤ		0.5147***	0.8120***	-0.0712	0.1442	0.2347*	0.0694	0.2255*	-0.0352	-0.0602	-0.1213	-0.208	0.0795	-0.0097	-0.1815	0.153	0.224*	-0.0769	0.1071
	_	0.547***	0.4637	-0.0411	0.0368	0.0997	0.0302	0.1345	0.0279	-0.033	-0.1883	-0.1967	0.1547	-0.0949	-0.0882	0.066	0.0493	0.0808	-0.07
IDH		_	0.1255	-0.0494	0.0304	0.3273**	0.1218	0.226	0.0563	0.2564*	-0.0979	-0.1138	0.2575*	-0.1635	-0.0765	0.1406	0.1216	0.0978	0.1317
EDIT			0.75*	0.039	0.171	0.2427*	0.081	0.1668	0.0836	0.1667	-0.0472	-0.0183	0.2059	-0.0601	-0.0541	0.1319	0.1539	0.0726	0.1221
GI DH			_	0.0125	0.2437	0.3264	0.0828	0.2709	-0.0953	-0.1165	0.3996	0.7423	0.1629	0.2865	0.2149	-0.053	-0.117	-0.3822	0.3373
				-0.0519	-0.0084	0.2667	-0.0726	0.4114	0.2019	0.4472	-0.1326	-0.3802	0.1991	0.0262	-0.292	-0.1096	-0.22	-0.0046	-0.1886
ALP				_	0.135	0.0319	-0.1115	-0.0523	0.1048	0.1961	0.0653	0.0998	-0.3116**	0.0537	-0.101	0.2087*	-0.041	0.2369*	-0.0237
· · · · ·					0.118	0.0952	-0.1244	0.0403	-0.0373	-0.0821	-0.0165	-0.037	-0.0908	0.088	0.1019	0.0122	0.0303	-0.1297	0.0986
vGT					_	-0.0384	-0.0927	-0.1677	-0.0908	-0.2221	-0.0196	-0.087	-0.3497**	0.065	0.0205	0.1193	-0.09	-0.0891	-0.0372
						-0.1326	0.1676	-0.1416	0.0514	-0.0439	0.1858	0.0035	-0.008	-0.0178	0.035	-0.1281	-0.1828	0.1304	0.0334
СК						_	0.0835	-0.1237	-0.2883**	0.0864	0.0141	-0.1225	-0.1226	0.0019	0.0618	0.1321	-0.2043	0.059	0.0821
							0.0304	0.0023	0.016	0.1653	-0.1289	-0.1043	0.1221	0.0221	0.1134	0.0321	0.1403	-0.1035	-0.0469
Total bilirubin							_	-0.0796	0.1203	-0.0639	-0.0535	0.1122	0.0295	0.0681	0.0455	0.1883	-0.0761	0.1073	0.1975
								-0.2727**	0.0464	-0.2354*	0.0252	-0.0124	-0.2222*	0.01	2 0.3557***	0.0459	0.0007	-0.0948	0.1077
Urea nitrogen								_	0.2436*	0.1356	-0.1901	-0.0734	0.3838***	-0.1304	-0.3484**	0.0688	0.133	0.0514	-0.148
									0.369***	0.123	-0.267**	-0.1559	0.2384*	0.11//	-0.44/3***	0.0936	0.0391	0.0928	-0.1274
Creatinine									_	0.0251	-0.1804	-0.0595	0.0768	0.2066^	0.0328	0.3319^^	0.2793^^	0.2165^	0.2785^^
										0.1009	-0.0141	0.1721	0.0785	0.0798	-0.2001	0.4/21^^^	0.1183	0.0041	0.2882^^
Glucose										_	0.0899	0.0063	-0.052	0.0929	0.0141	0.1814	0.0093	0.0841	0.0478
Total											0.1076	0.2180	0.1962	0.0974	-0.1516	0.0743	0.2024	-0.0832	0.1167
I Uldi											-	0.8903	0.2247	0.0978	0.0708	-0.0832	-0.120	U 0 15 <i>1</i>	-0.0129
												0.0109	0.0903	0.1213	0.1715	-0.0003	-0.1002	-0.104	0.1933
Phospholipid												-	0.4475	0.0074	0.1715	0.0029	-0.0900	0.2210	-0.0290
			Table 2a	a Meanii	ng of th	e Correl	ation C	oefficie	ent (r)				0.2123	0.1090	0.2739	0.1737	-0.0210	-0.0309	0.4139
Triglyceride			r	-=0	No rel	ationshir)						-	-0.0307	-0.0377	0.0500	0.1079	0.1100	-0.1105
					No or	noaliaihl	, o rolati	onchin						0.0312	3 0.2407*	0.0412	0.1005	0.0434	0.0403
Са			0<	≥∪.2		Inegligibl	ereiati	onsnip						_	0.2407	0.7014	0.303	-0.0204 -0.0215	0.0049 0.0049
			0.2< r	⁻ ≤0.4	Weak	relations	hip			—					0.0427	0.0000	0.333	-0.00 4 3	0.7037
IP			0.4< l r	· ≤0.7	Moder	ate relat	ionship								-	-0.0823	-0.0407	-0.2178*	0.185

There were weak to moderate negative correlations between serum urea nitrogen and inorganic phosphorus levels in males and females. - The serum urea nitrogen level reflected protein intake. These results indicated that the intracellular glycolytic system is promoted and phosphorus is utilized in relatively well-nourished animals with the result that inorganic phosphorus in the blood is taken up into the cells - [3].

- [3] Hayashi M. Recent findings in phosphate metabolism and etiology of hypophosphatemia. J Jpn Soc Intensive Care Med. 2009;16:5-6.

The following correlations were found with respect to serum electrolyte levels.

Statistical significances between IP and Ca (abbr.: IP-Ca) and IP-CI were judged to be incidental and "non-correlated" because they were unisexual and the degree of correlation was weak. Correlated: Na-Ca, Ca-K, Na-K, and Na-Cl Non-correlated: Ca-Cl, K-Cl, IP-Na, IP-K, IP-Cl, and IP-Ca Since Na⁺ and Cl⁻ are ingested as dietary salt and lost in the form of Na⁺ Cl⁻, it was considered that a correlation was observed between Na-Cl. It is difficult to determine the mechanism of the difference between the correlated and non-correlated parameters other than Na-CI in this study alone, and further investigation is necessary.

The others

3

170

130

/oumu)

C

Ca-Total protein: Because much of the calcium is bound to proteins in the blood.

Na-Total protein, Urea nitrogen-Triglyceride, and Phospholipid-Total cholesterol: Reflect nutritional status.

Urea nitrogen-ASAT: It was considered to be incidental since

correlation was weak and it was not clearly related in the scatter plot. Correlation between ASAT, ALAT, LDH, GLDH, and CK:

Because they are enzymes that are distributed in many organs of the body, there is a correlation among them.

Each cell shows correlation coefficient (upper: male, lower: female). *: p< 0.05 **: p< 0.01 ***: p< 0.001

There were weak to moderate positive correlations between serum creatinine and sodium levels as well as serum creatinine and chloride levels in males and females, and serum creatinine and potassium levels in males. There were weak positive correlations between serum creatinine and total protein or urea nitrogen levels in males and females.

Serum creatinine levels are widely known as an indicator of renal function, and serum concentrations increase when glomerular filtration rate is reduced [2]. In both males and females, serum creatinine levels did not deviate widely from the background data of the test facility (3 to 6 years old, mean \pm 2SD: 0.56-1.14 mg/dL for males, 0.49-0.97 mg/dL for females) and were considered to be within the range of physiological variability. These results suggest that serum creatinine levels reflect renal function even within the range of physiological variability, and animals with high serum creatinine levels tended to have higher serum electrolyte, total protein, and urea nitrogen levels because of relatively low glomerular filtration volume.

[2] Andrew S. Levey, M.D., Ronald D. Perrone, M.D., and Nicolaos E. Madias, M.D. SERUM CREATININE AND RENAL FUNCTION. Annual Review of Medicine 1988; 39: 466-490.

Table 3 Correlation matrix of the rate of change in body weight, body weight at the end of the 4-week dosing period, hematological, and biochemical parameters

	Body weight	RBC	HGB	HCT	MCV	MCH	MCHC	Retiulocyte ratio	Reticulocyte count	PLT	PT	APTT	WBC	Lym	Neu	Eos	Baso	Mono		
Rate of change	0.0149	0.0825	0.008	0.1819	0.1228	-0.0846	-0.2964**	0.1718	0.1848	-0.1402	-0.0353	0.0349	0.2512*	0.3901***	0.001	0.2102*	-0.0994	0.2157*	-	
in body weight	0.1489	0.0602	0.2548*	0.2684**	0.1252	0.1816	0.0194	0.0531	0.0864	0.0029	-0.2129*	-0.1285	-0.073	0.111	-0.1972	-0.0184	0.0603	0.1002		
Body woight		0.0816	0.2335*	0.2003	0.088	0.144	0.0923	0.1219	0.0074	-0.2223	0.1317	-0.1306	-0.1243	-0.0362	-0.1998	0.1649	0.1658	0.04	-	
	_	-0.0959	0.0093	0.0315	0.1354	0.1013	-0.0524	0.0009	-0.0826	-0.0683	-0.0889	-0.0513	0.1554	0.1462	0.118	0.0903	0.0514	0.14	_	
	5 ASAT	ALAT	LDH	GLDH	ALP	γGT	СК	Total bilirubin	Urea nitrogen	Creatinine	Glucose	Total cholesterol	Phospholipid	Triglyceride	Са	IP	Na	К	CI	Total proteir
Rate of change	-0.3013**	-0.3106**	-0.0144	-0.1395	0.2177*	0.1836	0.0878	-0.1254	-0.142	-0.1021	0.1805	0.112	0.0719	-0.1104	-0.0924	0.2953**	-0.0892	-0.2548*	0.0288	-0.2158
in body weight	0.2093*	0.1929	0.0177	0.1793	0.0781	0.0082	-0.1594	0.1249	-0.0433	4 -0.1087	-0.0329	0.0862	0.1352	0.2318*	0.0724	0.1532	0.0121	-0.0353	-0.1199	-0.068
Pody woight	-0.3299**	-0.0617	-0.238	-0.004	-0.0449	0.0758	-0.2874**	0.0416	-0.1674	0.5287***	-0.2509*	-0.2377*	-0.2256	-0.1804	0.2534*	0.1536	0.0559	0.1427	-0.0712	0.3544*

* * * : p< 0.001 Each cell shows correlation coefficient (upper: male, lower: female). *: p< 0.05 **: p< 0.01

5.0 10.0 Rate of change in body weight (%)

-20.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 Rate of change in body weight (%)

There were moderate positive correlations in males and weak positive correlations in females between body weight and serum creatinine levels. Creatinine is the final metabolite of creatine phosphate, and in humans, about 94% of the creatine in the body is distributed in muscles, suggesting that it may be a biomarker for the progression of amyotrophic lateral sclerosis [4]. These results suggest that the serum creatinine level was also proportional to skeletal muscle mass in cynomolgus monkeys and may be a biomarker of skeletal muscle mass. The degree of correlation was stronger in males than in females, possibly because males had more skeletal muscle mass than females.

[4] Mitsumoto H and Saito T. A prognostic biomarker in amyotrophic lateral sclerosis. Clinical Neurology 2018;58:729-736.

There were weak negative correlations in males between the rate of change in body weight and ASAT or ALAT. We found that animals with a rate of change in body weight of less than 0% and ASAT or ALAT of 100 U/L or more had lost weight in spite of their feeding status (in-house data), suggesting that catabolism of skeletal muscle proteins is promoted to compensate for the deficit energy [5] and ASAT and ALAT distributed in the skeletal muscle leaked into the blood. The absence of a similar trend in females may be due to their originally low skeletal muscle mass. [5] Ishibashi I. Enteral Nutrition and Optimal Dosage in the Early Invasive Period. The Japanese Journal of SURGICAL METABOLISM and NUTRITION 2016; 50-2: 105-109.

Conclusion

•This presentation clarifies the degree of the correlation between each test item in cynomolgus monkeys. The correlation between the basic test items will serve as a reference when abnormal values are found during the measurement.

•Males with larger body weight have higher basal creatinine levels in their blood, which should be kept in mind when assessing toxicity.

•In this presentation, since the population of animals was a control group, it is necessary to examine the relevance of each test item after administration of compounds such as nephrotoxicants and hepatotoxicants in order to better understand the degree of the correlation between each test item.